除了會看會聽,還會“聞”。近日,一直致力于模仿人類五感的人工智能又有新突破,通過神經擬態芯片,人工智能已經掌握了丙酮、氨和甲烷等10種氣味的神經表征,強烈的環境干擾也不會影響它對氣味的準確識別。這項由英特爾研究院與美國康奈爾大學共同參與的研究成果,日前發表于《自然·機器智能》雜志上。
神經擬態即通過模擬人腦神經元的工作機制,讓計算機具備像人一樣的自然智能特性。英特爾公布的另一項研究顯示,將上述768塊神經擬態芯片集成在5臺標準服務器大小的機箱中形成的神經擬態系統——Pohoiki Springs,已經相當于擁有了1億個神經元的大腦,而這相當于一個小型哺乳動物的大腦神經元數量。
通過堆疊芯片形成的神經擬態系統似乎讓我們看到了“機器可以和人一樣聰明”的希望,那神經擬態芯片及大規模集成系統的就緒,是否意味著“強認知、小樣本學習”的神經擬態計算有了規模商用的可能?
神經擬態訓練無需大量樣本
目前深度學習算法作為實現人工智能的重要技術手段,被廣泛應用于各類人工智能成果中。對于以深度學習算法為支撐的人工智能成果,數據可以說是研究的血液。數據量越大,數據質量越高,深度學習所表現的性能也就越好。但在不少研究環境中,由于涉及隱私安全以及客觀條件限制,有效數據難以獲得。
“深度學習雖然取得了長足進步,但仍局限在圖像和語音等方面的分類和識別中。”英特爾中國研究院院長宋繼強說,人類視覺、語音兩類數據容易獲得和標注,滿足了深度學習的必要條件,研究及應用相對成熟,但味覺和嗅覺的研究卻沒那么樂觀。
對于傳統的人工智能來說,主流的深度學習方法,可能需要設置上億個參數,訓練數十萬次,才能辨別出貓和狗的區別,更不用說更為陌生的氣味識別領域。但是,即便對于一個幾歲的嬰孩來說,他們辨認動物、識別氣味只需要幾次就夠了。
普通人經過訓練能區分三四百種到數千種氣味,但現實世界可以區分的氣味超過萬種。為模擬人類嗅到氣味的大腦運行機制,研究人員采用了一套源自人類大腦嗅覺回路結構和動力學相結合的神經算法訓練神經擬態芯片,僅需單一樣本,神經擬態芯片便可學會識別10種氣味,且不會破壞它對已學氣味的記憶。
宋繼強表示,即便是此前最先進的深度學習解決方案,要達到與神經擬態芯片相同的分類準確率,也需要3000倍以上的訓練樣本。
“理解大腦的神經網絡如何解決這些復雜的計算問題,將為設計高效、強大的機器智能提供重要啟示。”英特爾神經擬態計算實驗室高級研究科學家納比爾·伊瑪目說,下一步計劃將這種方法推進到更廣的應用領域,包括從感官場景分析到規劃和決策等抽象問題。
芯片向人腦進化成為可能
一只瓢蟲的大腦有25萬個到50萬個神經元,蟑螂的大腦有100萬個神經元,斑馬魚的大腦有1000萬個神經元,小型哺乳動物大腦有1億個神經元。 上一頁 1 2 下一頁